1. Prove that for every monotone function $f: \mathbb{R} \rightarrow \mathbb{R}$, its set C_{f} of continuity points is cocountable (i.e. f is continuous at every point $x \in \mathbb{R} \backslash Q$ for some countable Q) and f^{\prime} exists a.e.

Hint: It is enough to prove this for (not necessarily strictly) increasing functions.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Prove:
(a) If f has bounded variation, then $T_{f}+f$ and $T_{f}-f$ are increasing.

Hint: To show that a function g is increasing, you need to show that $g(b)-g(a) \geqslant 0$ for all $a<b$.
(b) Conclude that f has bounded variation if and only if $f=g_{+}-g_{-}$for some bounded increasing functions g_{+}and g_{-}.
(c) Deduce that f is a distribution of a (unique) finite Borel signed measure v if and only if f is right-continuous and has bounded variation. (Recall that we proved \Rightarrow in class, so you only need to prove \Leftarrow.)
3. Prove that for a function $f: \mathbb{R} \rightarrow \mathbb{R}$, the following are equivalent:
(1) f is a distribution of a (unique) finite Borel signed measure $v \ll \lambda$.
(2) f^{\prime} exists a.e. and is in $L^{1}(\lambda)$, and the fundamental theorem of calculus holds: for each $a<b$,

$$
f(b)-f(a)=\int_{a}^{b} f^{\prime} d \lambda
$$

(3) f has bounded variation and is absolutely continuous.

Instructions: You may use any results/proofs from class, as well as Folland's proofs (it is all there, if you can decode). You may also be concise in your proofs, just sketch them.
4. Let X, Y be normed vector spaces. Prove that if Y is a Banach space then so is $L(X, Y)$, the space of bounded linear transformations $X \rightarrow Y$.
5. [Optional] Let (X, μ) be a measure space and put $L^{\infty}:=L^{\infty}(X, \mu)$. Prove:
(a) $\|\cdot\|_{\infty}$ is a norm on L^{∞}.
(b) L^{∞} is a Banach space.
(c) Simple functions are dense in L^{∞}.
(d) $\lim _{q \rightarrow \infty}\|f\|_{q}=\|f\|_{\infty}$ for each $1 \leqslant p<\infty$ and $f \in L^{p} \cap L^{\infty}$.

Hint: Show that $\alpha_{q}\|f\|_{\infty} \leqslant\|f\|_{q} \leqslant \beta_{q}\|f\|_{\infty}$ for some $\alpha_{q}, \beta_{q} \rightarrow 1$ as $q \rightarrow \infty$. For the lower bound, use Chebyshev's inequality.
6. [Optional] Let (X, μ) be a measure space. Let $0<p, q<\infty$ and $f \in L^{p}(X, \mu), g \in L^{q}(X, \mu)$. Prove that the equality $\|f g\|_{r}=\|f\|_{p}\|f\|_{q}$, where $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, holds in Hölder's inequality if and only if one of $|f|^{p}$ and $|g|^{q}$ is a scalar multiple of the other. What happens if p or q is infinite?
7. [Optional] Let (X, μ) be a measure space such that there is $m>0$ with the property that every positive measure set has measure at least m. (E.g. counting measure.) Prove that for each $0<p \leqslant q \leqslant \infty$, we have $L^{p}(X, \mu) \subseteq L^{q}(X, \mu)$, in fact,

$$
\|f\|_{q} \leqslant m^{-\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{p}
$$

When does the equality hold?

