Math 564: Adv. Analysis 1 HOMEWORK 6 Due: Dec 5 (Tue), 11:59pm

1. Prove that for every monotone function $f : \mathbb{R} \to \mathbb{R}$, its set C_f of continuity points is cocountable (i.e. f is continuous at every point $x \in \mathbb{R} \setminus Q$ for some countable Q) and f' exists a.e.

HINT: It is enough to prove this for (not necessarily strictly) increasing functions.

- **2.** Let $f : \mathbb{R} \to \mathbb{R}$. Prove:
 - (a) If f has bounded variation, then $T_f + f$ and $T_f f$ are increasing.

HINT: To show that a function g is increasing, you need to show that $g(b) - g(a) \ge 0$ for all a < b.

- (b) Conclude that f has bounded variation if and only if $f = g_+ g_-$ for some bounded increasing functions g_+ and g_- .
- (c) Deduce that *f* is a distribution of a (unique) finite Borel signed measure ν if and only if *f* is right-continuous and has bounded variation. (Recall that we proved ⇒ in class, so you only need to prove ⇐.)
- **3.** Prove that for a function $f : \mathbb{R} \to \mathbb{R}$, the following are equivalent:
 - (1) *f* is a distribution of a (unique) finite Borel signed measure $\nu \ll \lambda$.
 - (2) f' exists a.e. and is in $L^1(\lambda)$, and the fundamental theorem of calculus holds: for each a < b,

$$f(b) - f(a) = \int_{a}^{b} f' d\lambda.$$

(3) f has bounded variation and is absolutely continuous.

INSTRUCTIONS: You may use any results/proofs from class, as well as Folland's proofs (it is all there, if you can decode). You may also be concise in your proofs, just sketch them.

- **4.** Let *X*, *Y* be normed vector spaces. Prove that if *Y* is a Banach space then so is L(X, Y), the space of bounded linear transformations $X \to Y$.
- **5.** [*Optional*] Let (X, μ) be a measure space and put $L^{\infty} := L^{\infty}(X, \mu)$. Prove:
 - (a) $\|\cdot\|_{\infty}$ is a norm on L^{∞} .
 - (b) L^{∞} is a Banach space.
 - (c) Simple functions are dense in L^{∞} .
 - (d) $\lim_{q\to\infty} ||f||_q = ||f||_{\infty}$ for each $1 \le p < \infty$ and $f \in L^p \cap L^{\infty}$.

HINT: Show that $\alpha_q ||f||_{\infty} \leq ||f||_q \leq \beta_q ||f||_{\infty}$ for some $\alpha_q, \beta_q \to 1$ as $q \to \infty$. For the lower bound, use Chebyshev's inequality.

- **6.** [*Optional*] Let (X, μ) be a measure space. Let $0 < p, q < \infty$ and $f \in L^p(X, \mu)$, $g \in L^q(X, \mu)$. Prove that the equality $||fg||_r = ||f||_p ||f||_q$, where $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, holds in Hölder's inequality if and only if one of $|f|^p$ and $|g|^q$ is a scalar multiple of the other. What happens if p or q is infinite?
- 7. [*Optional*] Let (X, μ) be a measure space such that there is m > 0 with the property that every positive measure set has measure at least m. (E.g. counting measure.) Prove that for each $0 , we have <math>L^p(X, \mu) \subseteq L^q(X, \mu)$, in fact,

$$||f||_q \leq m^{-(\frac{1}{p} - \frac{1}{q})} ||f||_p.$$

When does the equality hold?